26. Ring-Open Analogues of Adenine Nucleoside. Aminoacyl Derivatives of Cyclo- and Acyclo-nucleosides

by Gholam H. Hakimelahi*, Morteza Zarrinehzad, Ali A. Jarrahpour, and Hashem Sharghi

Chemistry Department, Shiraz University, Shiraz, Iran

(4. XII. 86)

The synthesis of acyclic analogues of ribo- and deoxyribonucleosides is described. These compounds (*Table 3*) are both poor substrates and poor inhibitors of adenosine deaminase. The synthesis of dinucleotides from these analogues is also described, and the activity along with the inhibitory properties of some of them are studied against deaminase enzyme. These nucleotides are resistant to degradation by phosphodiesterases. HCl impregnated on silica gel is an excellent reagent for the preparation of the chloromethyl ether precursors of acyclo-nucleosides. A general and rapid procedure is developed for the preparation and isolation of the 5'-amino-acyl derivatives of ribo- and arabinonucleosides. Quinoline has a marked effect on aminoacylations without racemization. Compounds **35a**, **b** possess remarkable antiviral effects *in vitro*. A procedure is also developed for the conversion of acyclo-ribonucleosides **13e**, **f** to acyclo-deoxyribonucleosides **11e**, **f**.

1. Introduction. – Many nucleoside analogues possess remarkable biological activity, particularly as antiviral and anticancer [1] [2]. Among them, the potent antiviral nucleoside 9-(β -D-arabinofuranosyl)adenine (*ara*-A) has shown activity against certain DNA viruses [3] [4]. Despite its proven efficacy, the practical value of *ara*-A is often reduced by its deamination *in vivo* by adenosine deaminase to give 9-(β -D-arabinofuranosyl)-hypoxanthine (*ara*-Hx), the main metabolite which possesses a low level of antiviral activity [5]. It was suggested that adenosine deaminase would recognize as substrate only those analogues capable of existing in the *anti*-conformation [6]. Consequently, many investigations have been carried out on flexible analogues of enzyme substrates, which have all the chemical features of deoxyadenosine, but which lack a rigid carbohydrate ring structure [7–15]. Furthermore, a low lipophilicity of *ara*-A precludes its use as a topical agent for treating genital, oral, and other cutaneous herpes infections [16]. In addition, the parental administration of *ara*-A does suffer from a low aqueous solubility of the drug [16].

In an attempt to overcome these problems which manifest themselves as difficulties in formulation, delivery, and topical application as well as in a lack of resistance to enzymic deactivation *in vivo*, a series of acyclo-nucleosides including adenine analogues of acyclo-vir [17] possessing aminoacyl side-chains with D- or L-configuration was synthesized. These analogues exhibit complete resistance to deamination.

2. Synthesis of Acyclo-nucleosides. – The general scheme for the synthesis of acyclonucleosides consists in the transformation $1 \rightarrow 2 \rightarrow 3 \rightarrow 9$. In a model reaction, the chloromethyl ether 2a is prepared from 2-chloroethanol (1a) and 1,3,5-trioxane in the presence of HCl adsorbed on silica gel. The concept of utilizing reagents adsorbed on inert inorganic supports for organic synthesis has been frequently employed [18–23]. In the HELVETICA CHIMICA ACTA - Vol. 70 (1987)

same perspective, HCl in aq. solution can be adsorbed on silica gel and then converts alcohols in aprotic solvents to the corresponding chloromethyl ethers in the presence of aldehydes.

Addition of silica gel (*Merck*, act. 1) to conc. aq. HCl (37%) and refluxing the mixture for a few hours affords a white granular material (see *Exper. Part*). Titration of the HCl impregnated on silica gel reveals, even after two months, that the reagent activity does not vary appreciably with time. The reaction rate of $1\rightarrow 2$ is, apparently, dependent both on the structure of the alcohol and on the ratio substrates/HCl. However, with 2 g of HCl/silica gel per 1 mmol of each substrate, the reaction is complete within 24 h at 25°. It may be carried out in solvents such as Et₂O or CHCl₃ without any considerable effect in yield.

Thus, treatment of 1,3-dichloropropan-2-ol (1b), 2-(benzoyloxy)ethanol¹) (1c), (2RS, 3SR)-1,3,4-tris(benzoyloxy)-2-butanol¹) (1d), and (2R, 3R)- (1e), and (2S, 3S)-2-benzyloxy-1,4-bis(benzoyloxy)-3-butanol¹) (1f) with 1,3,5-trioxane or methyl glyoxylate in the case of 1c gave the corresponding chloromethyl ethers **2a**-f and **2c'** by means of HCl/silica gel in CHCl₃.

In principle, compounds 2a-f and 2c' can be coupled directly to purines. Bu₄NI has been proposed as a mild catalyst in coupling reactions of this type [24]. Thus, when 2a and *N*-benzoyladenine were condensed in toluene using Bu₄NI, a fairly rapid reaction to the desired product 3a occurred (80% yield).

Reaction of **3a** with NaN₃ in DMF [14] gave a very low yield of compound **6** (Scheme 1). Therefore, it was decided to carry out the reaction in refluxing MeOH; to our surprise, a quantitative yield of salt **5** was obtained. To establish the feature of reaction $3a \rightarrow 5$, the following experiments were carried out (Scheme 1). Treatment of **3a** in refluxing MeOH in the absence of NaN₃ afforded, after 12 h, **5** (98%) as evidenced by IR, NMR, UV, and microanalysis. The same reaction at 25° gave compound **4** after 72 h. The structure of **4** is based on the fact that in the IR the amide group absorbs at 1715 cm⁻¹ and its NH as doublets at 3350 and 3480 cm⁻¹, with a concomitant lowering of the ¹H-NMR chemical shift of H–C(2) and H–C(8) of the purine base to 8.68 and 8.85 ppm (cf. data of **3a**: 1680, 3115 cm⁻¹ and 8.20, 8.51 ppm, resp.). Separate treatment of **4** in refluxing MeOH resulted in the formation of **5**. Crystallization of **3a** with H₂O also afforded **4**, which in turn was

220

¹) The systematic names of 1c-f are; 2-hydroxyethyl benzoate (1c), 3-hydroxybutane-1,2,4-triyl tribenzoate (1d), and 2-benzyloxy-3-hydroxybutane-1,4-diyl dibenzoate (1e, 1f).

converted to 5 by NaOMe/MeOH at 25° after 1 h. Reaction of 5 with NaN₃ in refluxing DMF gave 7 (λ_{max} 260 nm) in 70% yield.

As the electrophilic substitution at C(2) of 5 is a favorable reaction, the formation of 7 could be due to the leaving-group capacity of the N₃ function and the tendency of the purine system to stay in its aromatic form (see *Scheme 2*). Hydrogenolysis of 7 with Pd/C in EtOH at 30 psi gave acyclo-nucleoside 8 (60%).

As described above for 2a, *N*-benzoyladenine was reacted with 2b-f and 2c' in toluene to give the 9-alkylated products 3b-f and 3c' in *ca*. 65–80% yield. It should be noted that in benzene or CH₃CN, isomeric mixtures (N(7) and N(9)-substituted isomers) were formed. However, complete conversion to the desired N(9)-alkylated products took place upon heating the isomeric mixtures in toluene.

Treatment of **3b-f** with NH₁/MeOH resulted in the adenine compounds **9b-f**. The ester groups in 3c' were readily reduced with NaBH₄ in dry MeOH to give 9c' in high yield. The benzyl group can easily be removed from 9e, f by catalytic hydrogenation to afford 10e,f in good yields.

At this point, we turned our attention to the preparation of acyclo-nucleosides 11. In principle, reaction of compounds of type 13 with 1,1'-(thiocarbonyl)diimidazole should give products 14 that can be readily reduced to the deoxy-acyclo-nucleosides 15 [25]. Indeed, 9e, f were silvated with $(t-Bu)Me_2SiCl$ and the resulting products 12e, f hydrogenated to 13e,f, from which 14e,f were obtained (ca. 70%) on reaction with 1,1'-(thiocarbonyl)diimidazole. Subsequent reaction with Bu₃SnH and 2,2'-azobis(2-methylpropionitrile) in toluene gave the protected acyclo-nucleosides 15e,f (55%), and removal of the silvl group with Bu₄NF [26] generated 11e,f (80%).

3. Synthesis of Dinucleotides from Acyclo-nucleosides. – We next attempted to prepare dinucleotide-monophosphate analogues from acyclo-nucleosides and to study their behavior toward phosphodiesterase enzymes. The nucleotide analogue 20 was readily obtained from 9c' by preparing its monomethoxytrityl derivative 16 (Scheme 3). Silylation (\rightarrow 17) and deprotection gave 18 (see *Exper. Part*). Coupling of 1 equiv. each of 16 and 18 with 1 equiv. of 2,2,2-trichloroethylphosphorodichloridite followed by I2 oxida-

a)

tion of the phosphite group [27] (\rightarrow 19) and complete deprotection afforded 20 in good yield (see *Exper. Part*). The dinucleotides 21–30 (*Schemes 3* and 4) were prepared in a similar manner.

Compounds 20, 22, 25, and 26 were completely resistant to both snake-venom and spleen phosphodiesterases for 8 h under standard conditions (*Scheme 3*). However, the mixed nucleotides 27-30 possessing a unit of *ara*-A or adenosine and 9c', showed some degradation after 8 h (*Scheme 4*). These results were consistent with those reported [14] on another series of dinucleotides containing acyclo-nucleosides and indicate that the acyclo-nucleosides are not recognized as a normal substrate by phosphodiesterases.

4. Adenosine-Deaminase Studies on Acyclo-nucleosides and Dinucleotide Analogues. – The rate of deamination of 9c', 10e,f, 11e,f, 27–30, and adenosine in the presence of calf mucosal adenosine deaminase in buffered solutions of varying substrate concentration were determined according to the procedures described in [14]. The inhibition studies on the above substrates were also carried out following the procedure in [14]. The results are shown in *Table 1*.

Clearly, compared with adenosine, the conformational flexibility of the acyclo-nucleosides 9c', 10e,f, and 11e,f prevent their efficient binding to the enzyme. The substrates 9c', 10e,f, and 11e,f were also found to be weak competitive inhibitors of adenosine deaminase. Dinucleotides 27 and 29 are both good substrates and good inhibitors of adenosine deaminase, while 28 and 30 are both poor substrates and poor inhibitors. These findings are in accord with the structure-activity relationships [28] of various

Substrate	$K_m(M \cdot 10^5)$	Rel. V _{max}	K _i
Adenosine	4.68	1	
9c′	210	$1.22 \cdot 10^{-2}$	1.73 · 10-4
10e	155	$3.02 \cdot 10^{-2}$	$2.55 \cdot 10^{-4}$
f	190	$2.47 \cdot 10^{-2}$	$2.08 \cdot 10^{-3}$
11e	165	$2.80 \cdot 10^{-2}$	$3.00 \cdot 10^{-4}$
f	220	$2.12 \cdot 10^{-2}$	$1.54 \cdot 10^{-3}$
27	30	$15.60 \cdot 10^{-2}$	$6.01 \cdot 10^{-1}$
28	255	$1.83 \cdot 10^{-2}$	$2.21 \cdot 10^{-4}$
29	22	$21.27 \cdot 10^{-2}$	$8.25 \cdot 10^{-1}$
30	242	1.93 · 10 ²	$2.87 \cdot 10^{-4}$

Table 1. Substrate Activities and Inhibitory Properties against Adenosine-Deaminase Enzyme

adenine nucleosides showing a profound dependence of the binding to the enzyme on an available 5'-OH group. Compounds 27 and 29 have an available 5'-OH function on the rigid furanosyl ring of their adenosine moiety, whereas the 5'-position of the furanosyl ring in 28 and 30 is protected by the phosphate linkage. Since 27 and 29 possess good inhibitory properties and exhibit some degradation characteristics (*Scheme 4*), one might expect that the adenosine residue of 27 and 29 behave as a carrier having inhibitory properties to inactivate the deaminases, and then, by the aid of some phosphodiesterases, the acyclo-nucleoside moiety is liberated as a potential drug which hopefully is toxic to the infecting cells.

5. Aminoacylation Reactions of Cyclo- and Acyclo-nucleosides. – Direct acylation of the four common ribonucleosides uridine, cytidine, adenosine, and guanosine by adding (phthalimido)acetyl chloride to the nucleosides in DMF/THF in the presence of quinoline at 10° (at 60° for guanosine) afforded the corresponding compounds **31a**, **b** and **d** in ca. 70–90% and **31c** in 20% yield. Other bases such at Et₃N or pyridine did not facilitate the selectivity of the acylation of the primary OH function over the secondary OH functions or the NH₂ group of cytidine or adenosine. When cytidine or adenosine were acylated with phthalimidoacetic acid in the presence of dicyclohexylcarbodiimide or *N*-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, a 1:1 mixture of *N*-protected and 5'-*O*-protected ribonucleoside was obtained. Reaction of **31a**, **b** with phenylhydrazine [29] afforded aminoacyl derivatives **32a**, **b** in good yields.

Having established a method for the selective 5'-aminoacylation of ribonucleosides, we prepared the aminoacyl derivatives **35** and **36** of 9-(β -D-arabinofuranosyl)adenine and 9-(β -D-arabinofuranosyl)cytosine, respectively. Thus, D- or L-2-methyl-2-(phthalimido)-acetyl chloride were reacted with *ara*-A and *ara*-C in the presence of quinoline to afford **33** and **34**, respectively, in high yields. Cleavage of the phthalimido group in **33** and **34** using pyridine/AcOH/phenylhydrazine gave **35** and **36**, respectively, in less than 1 h. The cleavage conditions did neither affect ester groups nor caused racemization of the amino-acid side-chain. This was evidenced by mild hydrolysis of **35** and **36** to the corresponding D- or L-alanine.

As compound 9c was previously reported to have a remarkable antiviral activity [17], we prepared its aminoacyl derivatives 38 by reacting 9c with D- or L-2-methyl-2-(phthalimido)acetyl chloride as above (\rightarrow 37) followed by treatment with phenylhydrazine. That the NH₂ group on the adenine ring remained unacylated was demonstrated by the UV (λ_{max} (EtOH) 258–260 nm) and ¹H-NMR spectrum of 37 (br. s at 7.31 ppm, 2H, NH₂). By the same method, the silyl derivative 18 was transformed to 39 and 40. The latter was deprotected by treatment with Bu₄NF to afford 41 in 50% overall yield [26].

We recently have described [30] the pronounced antileukemic effect of some azetidinone derivatives containing a retinoic-acid chain $(ED_{50} \ 1.98 \cdot 10^{-10} \text{ M})$. Unfortunately, the unstability of the retinoids make their synthesis difficult and their use limited. Therefore, we decided to study the synthesis of acyclo-nucleosides having a retinoic-acid side-chain and examine their stability at different conditions. Thus, treatment of the aminoacyl derivatives **38** with retinoic acid in the presence of ClCOOEt led to an 80% isolated yield of **42**. The same conditions were applied to **8** yielding **43**. To bind retinoic acid on **8** via an amino-acid adaptor, **8** was transformed to the phthalimido derivative **44** by our standard procedure. Deprotection of **44** afforded **45** and reaction with retinoic acid/ClOOEt **46** in 55% overall yield. The prepared retinoids were stable under neutral conditions at 25–37° for 1 to 2 weeks as evidenced by TLC.

All the aminoacyl derivatives of cyclo- and acyclo-nucleosides **31–41** were found to exhibit complete resistance to deamination when assayed against calf mucosal adenosine deaminase *in vitro* [14] [31].

Substrate	Solubility in H ₂ O [mg/ml]	$\log P (1-\text{pentanol}/\text{H}_2\text{O})^a)$	
ara- A	0.40	- 0.47	
35a	9.71	0.58	
b	8.17	0.61	
10e	2.60	0.11	
f	2.21	0.12	
11e	1.70	0.20	
f	1.45	0.27	
9c′	3.11	0.18	
41	16.90	1.39	
9c	1.95	0.98	
38a	12.59	1.99	
b	11.70	2.15	
8	1.12	0.66	
45	10.16	1.59	

Table 2. Solubility in H₂O and Lipophilicity of Nucleoside Analogues

6. Solubility in Water and Lipophilicity of Adenine Derivatives. – The aminoacyl compounds showed fair increases of solubility in H_2O compared with the corresponding cyclo- and acyclo-nucleosides (*Table 2*). The lipophilicities were also determined *via* a pentanol/ H_2O distribution according to the methods described in [16] (*Table 2*).

7. Biological Activity. – The compounds 33–36 were tested for activity against *herpes-simplex*-type-1 virus (HSV-1). The two active compounds were adenine derivatives 35a and b with ED_{50} values vs. HSV-1 of 0.5 µg/ml and 0.12 µg/ml, respectively. The control experiment showed ara-A to be active against HSV-1 with an ED_{50} value of ca. 7 µg/ml. The increased activity of 35a, b over ara-A might be due to a combination of increased H₂O solubility and favorable lipophilicity along with their resistance to deamination toward adenosine deaminase (see above). Since the 5'-triphosphate of ara-A is the presumed bioactive component, it might be speculated that 35a, b do act as prodrugs and must liberate ara-A which is the active agent. Supporting evidence for this comes from the fact that the much more stable esters 33a, b were inactive against HSV-1 up to 100 µg/ml.

It should be noted that the NH_2 group of esters **35a**, **b** can assist hydrolysis of their corresponding ester functions as evidenced by gradual auto-hydrolysis of these compounds at 37°. This could be a reason for biological activity of *ara*-A carrying amino acid with D- and L-configuration.

The dinucleotide analogues 27–30 were also tested against HSV-1. The only active compound was 27 with an ED_{50} value of 24 µg/ml.

This work was supported by the *Shiraz University Research Council*. We are grateful to Mr. B. P. Tahvildari for some technical assistance.

Experimental Part

General. Reagent-grade solvents were distilled first and then stored over molecular sieves (type 4 Å). Adenine and calf mucosal adenosine deaminase were purchased from Sigma Chemical Comp. Column chromatography: short columns of silica gel 60 Merck (230-400 mesh) were packed in glass columns (\emptyset 2 or 3 cm) using 15–30 g of silica gel per g of crude mixture. TLC: Merck silica gel 60 F 254 anal. sheets. Paper chromatography: Whatman 3 mm. i-PrOH/conc. NH₄OH/H₂O 7:1:2 (v/v). Paper electrophoresis: Whatman 3 mm; Savant Flat plate electrophoretic chamber with a Savant Flat plate model HV power supply; 2000 V for 1 h; the soln. was buffered at pH 8.0 with 3.3 · 10⁻³ M KH₂PO₄ and 6.3 · 10⁻² M K₂HPO₄. M. p. Büchi 510; uncorrected. UV spectra: Cary 118 spectrophotometer. IR spectra: Beckman IR 8 spectrophotometer. ¹H-NMR spectra: Hitachi R-248 spectrometer.

Preparation of HCl/Silica Gel. A soln. of silica gel (Merck, act. 1, 230–400 mesh; 100 g) in conc. HCl (700 ml, 37% in H₂O) was refluxed with stirring for 5 h. The solid product was filtered and dried in a desiccator. The material was then kept in a tapped jar at ambient pressure and r.t. without any particular precaution.

Preparation of Chloromethyl Ethers **2a–f**. Representative procedure: To HCl/silica gel (10 g), a soln. of 2-chloroethanol (**1a**, 0.8 g, 10 mmol) and 1,3,5-trioxane (0.9 g, 10 mmol) in CHCl₃ (30 ml) was added with stirring. After 24 h at 25°, the solid material was filtered and washed with CHCl₃ (3×15 ml). The combined filtrate and washings were evaporated to afford *1-chloro-2-(chloromethoxy)ethane* (**2a**) in 95% yield as an oil. IR (film): 1110 (ether). ¹H-NMR (CCl₄): 3.88–4.18 (*m*, ClCH₂CH₂O); 5.78 (*s*, OCH₂Cl). Methyl glyoxylate was used instead of 1,3,5-trioxane in the case of **2c**'.

Condensation of N-Benzoyladenine with Chloromethyl Ethers 2: Compounds 3a-f and 3c'. Representative procedure (yields 65–80%): N-Benzoyladenine (2.39 g, 0.01 mol) was suspended in toluene (600 ml) and 2a (2.58 g, 0.02 mol) and Bu_4NI (0.5 g) were added. The mixture was refluxed for 4 h (TLC: presence of 3a and its N(7)-alkylated isomer). Heating for 24 h resulted in entire conversion to 3a. After cooling, H_2O (200 ml) was added, and the org. layer dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel. Elution

Com- pound	M.p. [°C]	λ_{\max} (EtOH) [nm] (ε)	R _f (TLC)	Com- pound	M.p. [°C]	λ_{\max} (EtOH) [nm] (ε)	R _f (TLC)
3a	112-113	282 (19800)	0.31 ^a)	18	138-140	259 (15103)	0.68ª)
b	138-140	282 (17426)	0.36^{a})	31a	145-146	259 (13150)	0.23 ^b)
c	foam	282 (18965)	0.32^{a})	b	169-172	275 (12650)	0.16 ^b)
d	foam	282 (16843)	0.35 ^a)	c	259 (dec).	253, 270	0.10^{b}
		. ,	,			(sh, 14125)	,
e	foam	281 (17125)	0.44^{a})	d	foam	264 (11202)	0.32 ^b)
f	foam	281 (16949)	0.44 ^a)	32a	192-194	258 (13251)	0.12 ^b)
c'	foam	282 (22 122)	0.36^{a})	b	215-216	275 (12345)	0.09 ^b)
6	120-123	281 (21 720)	0.29 ^a)	33a	143-145	260 (14120)	0.25 ^b)
9b	189-192	260 (14 195)	0.44^{b}	b	150-152	260 (14220)	0.25 ^b)
c	197.4	260 (13720)	0.62^{b})	34a	165166	275 (12710)	0.18 ^b)
d	185	260 (13970)	$0.29^{\circ})$	b	160163	275 (12685)	0.18 ^b)
e	180-182	260 (13 889)	0.41°)	35a	218	259 (13975)	0.15 ^b)
f	183-186	260 (14023)	0.41°)	b	222	259 (14110)	0.15 ^b)
c'	188190	260 (13763)	0.25°)	36a	220-222	275 (12750)	0.11 ^b)
10e	205	260 (14 489)	0.28°)	b	225-227	275 (12721)	0.11 ^b)
f	215	261 (14430)	0.28 ^c)	37a	140142	259 (14410)	0.31 ^b)
11e	186-188	260 (13 320)	0.32°)	b	140-143	259 (14413)	0.31 ^b)
f	189-191	260 (13315)	0.32°)	38a	209-212	259 (13 550)	0.19 ^b)
12e	foam	259 (14832)	0.85 ^a)	b	207208	259 (13 525)	0.19 ^b)
f	foam	259 (14850)	0.85 ^a)	39	foam	260 (14925)	0.70 ^b)
13e	foam	260 (13712)	0.69 ^a)	40	120-121	260 (14765)	0.36 ^b)
f	foam	260 (13720)	0.69 ^a)	41	180182	260 (14730)	0.19 ^b)
14e	foam	260 (13950)	0.75 ^a)	42a	103-106	259, 350	0.79 ^b)
f	foam	260 (13938)	0.75 ^a)	b	99-101	259, 350	0.79 ^b)
15e	foam	259 (14 589)	0.90^{a})	43	foam	259, 350	0.85 ^b)
f	foam	260 (14603)	0.90 ^a)	44	135-138	260 (13452)	0.28 ^b)
16	foam	260 (14952)	0.70 ^a)	45	197-199	260 (13110)	0.18 ^b)
17	oil	260 (14853)	0.92^{a})	46	foam	259, 350	0.71 ^b)
a) AcOE	t. ^b) AcOEt	/MeOH 9.5:0.5.	^c) AcOEt/MeOH 1	:1.			

Table 3. Properties of Nucleoside Analogues

with CH₂Cl₂/CCl₄ 1:1 removed impurities, and N-benzoyl-9-[(2-chloroethoxy)methyl]adenine (**3a**; 80%) was eluted with CHCl₃/AcOEt 1:1. Data:*Table 3*. IR (nujol): 3115 (NH), 1680 (C=O), 1113 (ether). ¹H-NMR (CDCl₃): 3.77-4.01 (*m*, CICH₂CH₂O); 5.80 (*s*, OCH₂N); 7.39-8.21 (*m*, Ph, NH); 8.20 (*s*, H-C(2)); 8.51 (*s*, H-C(8)). Anal. calc. for C₁₅H₁₄ClN₅O₂ (331.58): C 54.29, H 4.22, N 21.12, Cl 10.71; found: C 54.01, H 4.11, N 21.30, Cl 10.83.

N-Benzoyl-3,9-(ethanoxymethano) adenin-3-ium and 3,9-(Ethanoxymethano) adenin-3-ium Chloride (4 and 5, resp.). A suspension of **3a** (3.31 g, 0.01 mol) in H₂O (200 ml) was refluxed to give a clear soln. After cooling, **4** (98%) was precipitated, m.p. 118-120°, R_{f} (AcOEt) 0.14. UV (EtOH): 280. IR (nujol): 3350, 3480 (NH), 1715 (C=O), 1120 (ether). ¹H-NMR ((D₆)DMSO): 3.61-3.99 (br. *s*, NCH₂CH₂O); 5.75 (*s*, OCH₂N); 7.50-8.31 (*m*, Ph); 8.68 (*s*, H-C(2)); 8.85 (*s*, H-C(8)); 9.51 (br. *s*, NH).

Compound 5 (99%) was obtained by treatment of 4 with 1 equiv. of NaOMe in MeOH for 1 h at 25°, m. p. 225°. R_f (AcOEt) 0.04. UV (EtOH): 257. IR (nujol): 3290 (NH₂), 1105 (ether). ¹H-NMR ((D₆)DMSO): 3.75 (*s*, NCH₂CH₂O); 5.61 (*s*, OCH₂N); 7.81 (br. *s*, NH₂); 8.32 (*s*, H–C(2)); 8.42 (*s*, H–C(8)). Anal. calc. for C₈H₁₀ClN₅O (227.53): C 42.19, H 4.39, N 30.77, Cl 15.60; found: C 42.01, H 4.22, N 30.56, Cl 15.21.

9-[(2-Azidoethoxy)methyl]adenine (7) and 9-[(2-Aminoethoxy)methyl)]adenine (8). To a soln. of 5 (2.27 g, 0.01 mol) in DMF (50 ml), NaN₃ (3.25 g, 0.05 mol) was added. The soln. was refluxed for 24 h and then poured into H₂O (200 ml). Filtration of the precipitate and crystallization from H₂O afforded 7 (70%), m.p. 190–192°, $R_{\rm f}$ (AcOEt) 0.02. UV (EtOH): 260. IR (nujol): 3100–3260 (NH₂), 2100 (N₃), 1110 (ether). ¹H-NMR ((D₆)DMSO): 3.59 (m, CH₂N₃); 3.88 (m, CH₂O); 5.79 (s, OCH₂N); 6.81 (br. s, NH₂); 7.88 (s, H–C(2)); 8.16 (s, H–C(8)).

Compound 7 was hydrogenated in EtOH with Pd/C at 25° and 30 psi for 1 h to give 8 (60%) which was crystallized from H₂O, m. p. 221–224°, R_f (AcOEt/MeOH 9:1) 0.13. UV (EtOH): 260. IR (nujol): 3100–3300 (2 NH₂), 1100 (ether). ¹H-NMR ((D₆)DMSO/D₂O): 2.98 (*m*, CH₂ND₂); 3.79 (*m*, CH₂O); 5.78 (*s*, OCH₂N); 7.85 (*s*, H–C(2)); 8.00 (*s*, H–C(8)). Anal. calc. for C₈H₁₂N₆O (208.13): C 46.15, H 5.77, N 40.38; found: C 46.01, H 5.81, N 40.41.

Debenzoylation of Acyclic Adenine Nucleosides: Compounds **9b–f**. Representative procedure: To a soln. of **3d** (2.69 g, 0.01 mol) in MeOH (20 ml), 80 ml of sat. NH₃/MeOH was added. The soln. was sealed and maintained at 25° for 24 h. The mixture was concentrated to 30 ml and left overnight to afford 3-[(adenin-9-yl)methoxy]butane-1,2,4-triol (**9d**; 90%) as a white solid. Data: Table 3. ¹H-NMR ((D₆)DMSO/D₂O): 3.32–3.78 (m, 2CH₂OD, CHOD); 3.87–4.22 (m, CHO); 5.61 (s, OCH₂N); 8.07 (s, H–C(2)); 8.13 (s, H–C(8)). Anal. calc. for C₁₀H₁₅N₅O₄ (269.33): C 44.61, H 5.57, N 26.02; found: C 44.39, H 5.56, N 26.10.

2-(Adenin-9-yl)-2-(2-hydroxymethoxy)ethanol (9c'). To a soln. of 3c' (4.75 g, 0.01 mol) in dry MeOH (30 ml) at 0°, NaBH₄ (2.8 g, 0.07 mol) was added in portions with stirring within 2 h. Then, the solvent was evaporated and the residue washed with Et₂O. Crystallization from H₂O gave 9c' (80%). Data: *Table 3*. Anal. calc. for $C_{24}H_{21}N_5O_6$ (475.31): C 60.63, H 4.42, N 14.74; found: C 60.35, H 4.32, N 14.81.

(2R, 3R)- and (2S, 3S)-3-[(Adenin-9-yl)methoxy]butane-1,2,4-triol (10e and 10f, resp.). Representative procedure: Compound 9e (5 g) was dissolved in hot EtOH (100 ml), and PdO₂ (2 g) and cyclohexene (50 ml) were added. The mixture was stirred for 20 h at 25° followed by heating at reflux for 3 h. The mixture was cooled and filtered. The residue was washed with 280 ml of hot EtOH. The filtrate and washings were combined and evaporated to yield 2 g of crude product. Crystallization from H₂O gave 1.5 g of 10e (40%). Data: Table 3. ¹H-NMR ((D₆)DMSO/D₂O): 3.30–3.78 (m, 2CH₂OD, CHOD); 3.91–4.35 (m, CHO); 5.69 (s, OCH₂N); 8.06 (s, H–C(2)); 8.13 (s, H–C(8)).

10f: Spectral data are the same as for 10e.

 $9-\{(1R,2R)-$ and (1S,2S)-2-Benzyloxy-3- $\{[(tert-butyl)dimethylsily]]oxy\}-1-\{[(tert-butyl)dimethylsily]]-oxymethyl\}propoxy\}adenine (12e and 12f, resp.). Procedure: To a suspension of 9e (3.59 g, 0.01 mol) in THF (60 ml), pyridine (4 g, 0.05 mol), (t-Bu)Me_2SiCl (3.20 g, 0.02 mol), and AgNO₃ (3.40 g, 0.02 mol) were added, the mixture was stirred for 10 h at 25° and then filtered into H₂O (100 ml). The aq. soln. was extracted with AcOEt and the extract dried (Na₂SO₄), filtered, and evaporated. The residue was applied to a column of silica gel and 12e (96%) was eluted with CHCl₃ as a foam. Data:$ *Table 3.*¹H-NMR (CDCl₃): 0.17, 0.19 (2 s, 2(CH₃)₂Si); 1.01 (s, 2(CH₃)₃C); 3.52–4.29 (m, CH₂CHCHCH₂); 4.55 (s, PhCH₂); 5.88 (s, OCH₂N); 4.75 (s, Ph); 7.15 (s, NH₂); 8.00 (s, H-C(2)); 8.12 (s, H-C(8)). Similar spectral data for 12f.

(2R,3R)- and (2S,3S)-3-[(Adenin-9-yl)methoxy]-1,4-bis{[(tert-butyl)dimethylsily]oxy}butan-2-ol (13e and 13f, resp.) were prepared from 12e,f like 8 from 7 (AcOEt instead of EtOH). Data: Table 3.

O-(1R,2R)- and (1S,2S)-2-[(Adenin-9-yl)methoxy]-3- $\{[(tert-butyl)dimethylsilyl]oxy\}$ -1- $[(tert-butyl)dimethylsilyl]oxymethyl\}$ propyl Imidazol-1-carbothioate (14e and 14f, resp.). Procedure: To a soln. of 13e (2 mmol) in DMF (20 ml) was added 1,1'-(thiocarbonyl)diimidazole (6 mmol). After stirring at 25° for 5 h, the soln. was diluted with AcOEt (100 ml) and H₂O (100 ml). The org. layer was separated and washed with H₂O (3 × 70 ml), dried (Na₂SO₄), filtered, and evaporated. The residue was chromatographed on silica gel and eluted with CHCl₃ to afford 14e (70%) as a foam. Data: Table 3. ¹H-NMR of 14e,f: similar to the one of 12e.

9-{(1R,2R)- and (1S,2S)-3-{{(tert-Butyl)dimethylsilyl]oxy}-1-{{(tert-butyl)dimethylsilyl]oxymethyl}propoxy}adenine (15e and 15f, resp.). Procedure: A mixture of 14e (6 mmol), 2,2'-azobis(2-methylpropionitrile) (1 g), and Bu₃SnH (27 mmol) was heated at reflux in toluene for 3–4 h. Solvent was removed and 15e (55%) isolated as a foam after silica-gel chromatography using CHCl₃/AcOEt 8:2. ¹H-NMR (CDCl₃): 0.18, 0.19 (2 s, 2(CH₃)₂Si); 1.02 (s, 2(CH₃)₃C); 1.31–1.58 (m, CH₂); 3.52–4.02 (m, 2CH₂OSi, CHO); 5.71 (s, OCH₂N); 7.21 (s, NH₂); 7.99 (s, H–C(2)); 8.15 (s, H–C(8)). Data: *Table 3*. Anal. calc. for C₂₂H₄₃N₅O₃Si₂ (461.53): C 52.27, H 9.33, N 15.18; found: C 57.21, H 9.23, N 15.17.

Spectral data of 15f: similar to that of 15e.

(2R)- and (2S)-2-[(Adenin-9-yl)methoxy]butane-1,4-diol (11e and 11f, resp.). Procedure: to a soln. of 15e (0.461 g, 1 mmol) in THF (20 ml), Bu₄NF (2.5 mmol) was added and stirred for 2 h (TLC: no 15e left). The solvent was evaporated and the residue treated with H₂O (5 ml). The solid material was collected and crystallized from EtOH to afford 11e (80%). Data: Table 3. ¹H-NMR ((D₆)DMSO/D₂O): 1.45 (m, CH₂); 3.56 (m, 2CH₂OD); 3.81 (m, CHO); 5.61 (s, OCH₂N); 8.01 (s, H-C(2)); 8.15 (s, H-C(8)). Anal. calc. for C₁₀H₁₅N₅O₃ (253.33): C 47.43, H 5.93, N 27.66; found: C 47.33, H 5.82, N 27.45.

Spectral data of 11f: similar to that of 11e.

2-(Adenin-9-yl)-2-{[2-(monomethoxytrityl)oxy]ethoxy}ethanol (16), 9-{2-{[(tert-Butyl)dimethylsilyl]oxy}-1-{2-[(monomethoxytrityl)oxy]ethoxy}ethoxy}ethyl}adenine (17), and 2-{1-(Adenin-9-yl)-2-{[(tert-butyl)dimethylsilyl]oxy}ethoxy}ethanol (18). To a soln. of 9c' (4.75 g, 0.01 mol) in dry pyridine (150 ml), monomethoxytrityl chloride (3.24 g, 0.01 mol) was added and stirred at 25° for 24 h. Pyridine was removed under reduced pressure by co-distillation with toluene to afford a residue which was applied to a silica-gel column. Impurities were eluted with CH₂Cl₂ and pure 16 (80%) was eluted with CHCl₃ as a foam. Data: Table 3. ¹H-NMR (CDCl₃): 3.35–3.78 (m, CH₃O, OCH₂CH₂O, CH₂OH); 5.59 (s, OCH₂N); 6.31 (s, NH₂); 6.71–7.43 (m, 2Ph, CH₃OC₆H₄); 7.91 (s, H–C(2)); 8.25 (s, H–C(8)).

As described for 12e, 16 was silylated to 17 (90%). Data: Table 3. Spectral data: similar to that of 16.

Hydrolysis of 17 by benzenesulfonic acid (1% in CH₃CN) at 25° gave 18. (95%) after 20 min. Data: *Table 3*. Anal. calc. for $C_{15}H_{27}N_5O_3Si$ (353.53): C 50.99, H 7.65, N 19.83; found: C 60.11, H 7.65, N 19.79.

Nucleotides **19–26**. Representative procedure (40–50% yield for condensation, 30–50% for deprotection): Collidine (5 equiv.) was added to THF (1 ml) at -78° in a vial (rubber septum, magnetic stirrer), followed by 2,2,2-trichloroethyl phosphodichloridite (0.6 equiv.). A soln. of **16** (0.5 mmol) in THF (0.5 ml) was added dropwise within 15 min. Then, **18** (0.5 mmol) in THF (0.5 ml) was added and the mixture stirred at -78° and allowed to warm up to 20° during 1 h. I₂ (1.2 equiv.) in 3 ml of THF/H₂O 2:1 was added and the soln. stirred for 25 min. The solvents were removed, the residue was taken up in CH₂Cl₂ (50 ml), washed with 5% NaHSO₃ (30 ml) and H₂O (30 ml), the org. layer concentrated and the residue chromatographed on 10 prep. TLC plates with CHCl₃/EtOH 6:1. The band at $R_{\rm f}$ ca. 0.67 was eluted with AcOEt and 2-{*1-(adenin-9-yl)-2-{[(tert-butyl)dimethylsilyl]oxy}ethoxy}ethyl 2-(adenin-9-yl)-2-{2-[(monomethoxytrityl)oxy]ethoxy}ethyl phosphate (19; 40%) obtained after evaporation and washing with hexane. Data: <i>Table 4*.

Nucleotide	M.p. [°C]	$\lambda_{\max}(\text{EtOH}) [\text{nm}]$	R _f	$E_{\rm m}^{\rm Tp}({\rm pH8})$
19	85-88	258	0.52 ^a)	
21	130-132	258	0.32^{a})	_
23	90- 93	259	0.67 ^a)	_
24	105-107	258	0.67^{a})	-
20	-	258	0.40^{b})	0.25
22	-	258	0.49 ^b)	0.25
25	-	259	0.37 ^b)	0.24
26	_	259	0.37 ^b)	0.24
27	-	260	0.45 ^b)	0.23
28	_	259	0.48^{b})	0.22
29	-	260	0.46 ^b)	0.21
30	_	260	0.41 ^b)	0.23

Table 4. Properties of Nucleotide Analogues

^a) Solvent for TLC: CHCl₃/EtOH 6:1.

b) Solvent for paper chromatography: i-PrOH/NH₄OH/H₂O 7:1:2.

Compound 19 was deprotected a) with 1% benzenesulfonic acid in CH₃CN (MeOTr group), b) by Zn-Cu couple in DMF at 55° for 10 h [27] (CCl₃CH₂ group), and c) with Bu₄NF at 25° for 2 h ((*t*-Bu)Me₂Si group) to afford 2-[1-(adenin-9-yl)-2-hydroxyethoxy]ethyl 2-(adenin-9-yl)-2-(2-hydroxyethoxy)ethyl phosphate (20; 35%), m. p. > 300°. Data: Table 4.

Mixed Nucleotides **27–30**. Using the methods for the protection of adenosine and *ara*-A [32] [33] 5'-O-(monomethoxytrityl)-2'-O-[(*tert*-butyl)dimethylsilyl]adenosine, 5'-O-(monomethoxytrityl)-2'-O-[(*tert*-butyl)dimethylsilyl]-arabinoadenosine, and 2',3'-disilylated derivatives of ribo- and arabinoadenosine were prepared. These compounds were condensed with acyclo-nucleosides **16** or **18** to afford the corresponding dinucleotides **27–30** after complete deprotection by the same method as described above. Data: *Table 4*.

Enzyme Assays. The procedures used for adenosine deaminase, snake venom and spleen phosphodiesterases have been described previously [14]. The results are collected in *Table 1* and *Scheme 4*.

Aminoacylation of Cyclo- and Acyclo-nucleosides: Compounds 31-41. Representative procedure: Adenosine (0.27 g, 1 mmol) was dissolved with gentle heating in dry DMF (10 ml). Then, THF (10 ml) and quinoline (0.129 g,

1 mmol) were added, and the mixture was cooled to 10° . A soln. of phthalimidoacetyl chloride (0.223 g, 1 mmol) in dry THF (1 ml) was added dropwise during 10 min and the mixture stirred at 25° for 3 h. The solvent was then evaporated at 50° . The residue was dissolved in a minimum of CHCl₃ and applied to a short silica-gel column (12×2 cm). Elution with CHCl₃ removed impurities, and 5'-O-(2-phthalimidoacetyl)-adenosine (**31a**; 80%) was eluted with AcOEt/acetone 1:1. Data: Table 3. IR (nujol): 1750 (ester), 1720 (amide).

Compound **31a** (0.454 g, 1 mmol) was then dissolved in pyridine (1 ml), and 10 equiv. of 0.5 M phenylhydrazine in pyridine/AcOH 3:2 were added. After 1 h, pentane-2,4-dione (10 equiv.) was added with cooling. Solvents were removed, and the residue was suspended in CHCl₃ to dissolve impurities. The precipitate was filtered and washed with CHCl₃ to afford 5'-O-glycyladenosine (**32a**; 60%). Data: *Table 3.* IR (nujol): 1740 (ester). Anal. calc. for $C_{12}H_{16}N_6O_5$ (324.62): C 44.44, H 4.94, N 25.93; found: C 44.23, H 4.87, N 25.89.

Compound 40 was prepared from 18 via 39 by the same method. After treatment with Bu_4NF , 41 was obtained. Data: Table 3.

Retinoic-Acid Derivatives 42 and 43. Representative procedure (yields *ca.* 80%): Retinoic acid (0.3 g, 1 mmol) was dissolved in dry CH_2Cl_2 (20 ml) under a stream of N_2 . Pyridine (0.2 g, 2.5 mmol) was added. A soln. of CIOOEt (0.11 g, 1.1 mmol) in 5 ml CH_2Cl_2 was added dropwise. The mixture was stirred for 15 min at 0°. Then, **38a** (0.28 g, 1 mmol) was added. After 1 h, the soln. was evaporated and the residue crystallized from Et₂O to afford 2-*[(adenin-9-yl)methoxy]ethyl* N-retinoylalaninate (42a; 80%). Data: Table 3. IR (CH_2Cl_2): 3200–3400 (NH, NH₂), 1750 (ester), 1620 (amide).

 N^{1} -[(Adenin-9-yl)methoxy]ethyl- N^{2} -retinoylglycinamide (46). Compound 8 was treated with phthalimidoacetyl chloride by the same method as described for the synthesis of 31a to afford N-2-[(adenin-9-yl)methoxy]ethyl-2-(phthalimido)acetamide (44; 90%). Reaction of 44 with phenylhydrazine, (see preparation of 32a) gave N¹-{2-[(adenin-9-yl)methoxy]ethyl}glycinamide (45; 80%). Then 45 was converted to 46 (78%) by the same procedure as described for the synthesis of 42a. Data: Table 3.

Determination of Solubility. An excess of each compound (see Table 2, 10 mg) was agitated for 20 h in a 25-ml volumetric flask with 5 ml of 0.1 M phosphate buffer. The soln. was filtered from undissolved solids through a 4–5.5 mesh (ASTM) sintered glass funnel and the concentration of the solute determined by UV absorbance (Table 2).

Determination of Partition Coefficients (Lipophilicities). A soln. of each compound (see Table 2, 10 ml) in 0.1 m phosphate buffer possessing an absorbance of 2–2.8 at 260 nm was shaken with pentanol (10 ml) in a 50-ml separatory funnel for 1 h. The layers were separated and their concentrations determined by UV. The partition coefficient was calculated as $P = [S]_{pentanol}/[S]_{H_2O}$ (Table 2).

REFERENCES

- [1] L.N. Simon, R.J. Bauer, R.L. Tolman, R.K. Robins, Biochemistry 1970, 9, 573.
- [2] R.J. Walker, E. Declercq, F. Eckstein, Eds., 'Nucleoside Analogues: Chemistry, Biology, and Medical Applications', Plenum Press, New York, 1979.
- [3] W. M. Shannon, in 'Adenine Arabinoside, an Antiviral Agent', Eds. D. Pavan-Langston, R. A. Buchanan, and C. A. Alford, Raven Press, New York, 1975, pp. 1-44; A.J. Dresner, M. L. Seamans, *ibid.*, pp. 381-392.
- [4] R.J. Whitey, S. Soong, R. Dolin, G.J. Galasso, R.T. Chien, C.A. Alford, New Engl. J. Med. 1977, 297, 289.
- [5] J.D. Connor, L. Sweetman, S. Carey, M.S. Stuckey, R. Buchanan, in [3], pp. 177-196.
- [6] K.K. Ogilvie, L. Slotin, P. Rheault, Biochem. Biophys. Res. Commun. 1971, 45, 297.
- [7] H.J. Schaeffer, L. Beauchamp, P. de Miranda, G.B. Elion, D.J. Bauer, P. Collins, Nature (London) 1978, 272, 583.
- [8] P. M. Keller, J. A. Eyfe, L. Beauchamp, C. M. Lubbers, P. A. Furman, H. J. Schaeffer, G. B. Elion, Biochem. Pharmacol. 1981, 30, 3071.
- [9] A.C. Schroeder, R.G. Hughes, A. Bloch, J. Med. Chem. 1981, 24, 1078.
- [10] E. Declercq, A. Holey, J. Med. Chem. 1979, 22, 510.
- [11] K.K. Ogilvie, U.O. Cheriyan, B.K. Radatus, K.O. Smith, K.S. Galloway, W.L. Kennell, Can. J. Chem. 1982, 60, 3005.
- [12] K.O. Smith, K.S. Galloway, W.L. Kennell, K.K. Ogilvie, B.K. Radatus, Antimicrob. Agents Chemother. 1982, 22, 55.
- [13] K.O. Smith, K.S. Galloway, K.K. Ogilvie, U.O. Cheriyan, Antimicrob. Agents Chemother. 1982, 22, 1026.
- [14] K.K. Ogilvie, N. Nguyen-Ba, M. F. Gillen, B.K. Radatus, U.O. Cheriyan, H.R. Hanna, K.O. Smith, K.S. Galloway, Can. J. Chem. 1984, 62, 241.

- [15] K.K. Ogilvie, R. G. Hamilton, M. F. Gillen, B. K. Radatus, K. O. Smith, K. S. Galloway, Can. J. Chem. 1984, 62, 16; T.S. Lin, M.C. Liu, Tetrahedron Lett. 1984, 25, 905.
- [16] D.C. Baker, T.H. Haskell, S.R. Putt, J. Med. Chem. 1978, 21, 1218.
- [17] H.J. Schaeffer, in 'Nucleosides, Nucleotides, and Their Biological Applications', Eds. J.L. Rideout, D.W. Henry, and L.M. Beacham III, Academic Press, New York, 1983, pp. 1–17.
- [18] E. Keinan, Y. Mazur, J. Org. Chem. 1978, 43, 1020.
- [19] M. Hudlicky, J. Org. Chem. 1974, 39, 3460.
- [20] E.C. Taylor, C.S. Chiang, A. McKillop, J.F. White, J. Am. Chem. Soc. 1976, 98, 6750.
- [21] E. Santaniello, F. Ponti, A. Manzocchi, Synthesis 1978, 534; ibid. 1978, 891.
- [22] G. H. Posner, D. Z. Rogers, C. M. Kinzig, G. M. Gurria, Tetrahedron Lett. 1975, 3597.
- [23] E. Keinan, Y. Mazur, J. Am. Chem. Soc. 1977, 99, 3861.
- [24] A. Matsuda, Y. Kurasawa, K. A. Watanabe, Synthesis 1981, 748; Z. Tocik, R. A. Earl, J. Beranek, Nucleic Acids Res. 1980, 8, 4755.
- [25] K. K. Ogilvie, G. H. Hakimelahi, Z. A. Proba, N. Usman, Tetrahedron Lett. 1983, 24, 865.
- [26] G. Just, G.H. Hakimelahi, A. Ugolini, R. Zamboni, Synth. Commun. 1979, 9, 113.
- [27] K.K. Ogilvie, M.J. Nemer, Can. J. Chem. 1980, 58, 1389.
- [28] A. Bloch, M. J. Robins, J. R. McCarthy, Jr., J. Med. Chem. 1967, 10, 908.
- [29] G. H. Hakimelahi, A. Khalafi-Nezhad, Helv. Chim. Acta 1983, 66, 757.
- [30] G. Just, G. H. Hakimelahi, U.S. Patent, 4, 385, 175, May 24, 1983.
- [31] H. M. Kalckar, J. Biol. Chem. 1947, 167, 461.
- [32] G. H. Hakimelahi, Z. A. Proba, K. K. Ogilvie, Can. J. Chem. 1982, 60, 1106.
- [33] K.K. Ogilvie, D.P.C. McGee, S.M. Boisvert, G.H. Hakimelahi, Z.A. Proba, Can. J. Chem. 1983, 61, 1204.